78 research outputs found

    Flutter suppression for the active flexible wing: Control system design and experimental validation AIAA-92-2097

    Get PDF
    The synthesis and experimental validation of a control law for13; an actiqe flutter suppression system for the Active Flexible13; Wing wind-tunnel model is presenied. The design was13; accomplished with traditional root locus and Nyquist methods13; using interactive computer graphics tools and with extensive use13; of simulation-based analysis. The design approach relied on a13; fundamental understanding of the flutter mechanism to13; formulate a simple control law structure. Experimentally, the13; flutter suppression controller succeeded in simultaneous13; suppression of two flutter modes, significantly increasing the13; flutter dynamic pressure despite errors in the design model. The13; flutter suppression controller was also successfully operated in13; combination with a rolling maneuver controller to perform13; flutter suppression during rapid rolling maneuvers

    Simulation of Dynamics of a Flexible Miniature Airplane

    Get PDF
    A short report discusses selected aspects of the development of the University of Florida micro-aerial vehicle (UFMAV) basically, a miniature airplane that has a flexible wing and is representative of a new class of airplanes that would operate autonomously or under remote control and be used for surveillance and/or scientific observation. The flexibility of the wing is to be optimized such that passive deformation of the wing in the presence of aerodynamic disturbances would reduce the overall response of the airplane to disturbances, thereby rendering the airplane more stable as an observation platform. The aspect of the development emphasized in the report is that of computational simulation of dynamics of the UFMAV in flight, for the purpose of generating mathematical models for use in designing control systems for the airplane. The simulations are performed by use of data from a wind-tunnel test of the airplane in combination with commercial software, in which are codified a standard set of equations of motion of an airplane, and a set of mathematical routines to compute trim conditions and extract linear state space models

    A simulation study of the flight dynamics of elastic aircraft. Volume 2: Data

    Get PDF
    The simulation experiment described addresses the effects of structural flexibility on the dynamic characteristics of a generic family of aircraft. The simulation was performed using the NASA Langley VMS simulation facility. The vehicle models were obtained as part of this research project. The simulation results include complete response data and subjective pilot ratings and comments and so allow a variety of analyses. The subjective ratings and analysis of the time histories indicate that increased flexibility can lead to increased tracking errors, degraded handling qualities, and changes in the frequency content of the pilot inputs. These results, furthermore, are significantly affected by the visual cues available to the pilot

    A simulation study of the flight dynamics of elastic aircraft. Volume 1: Experiment, results and analysis

    Get PDF
    The simulation experiment described addresses the effects of structural flexibility on the dynamic characteristics of a generic family of aircraft. The simulation was performed using the NASA Langley VMS simulation facility. The vehicle models were obtained as part of this research. The simulation results include complete response data and subjective pilot ratings and comments and so allow a variety of analyses. The subjective ratings and analysis of the time histories indicate that increased flexibility can lead to increased tracking errors, degraded handling qualities, and changes in the frequency content of the pilot inputs. These results, furthermore, are significantly affected by the visual cues available to the pilot

    Variable-Structure Control of a Model Glider Airplane

    Get PDF
    A variable-structure control system designed to enable a fuselage-heavy airplane to recover from spin has been demonstrated in a hand-launched, instrumented model glider airplane. Variable-structure control is a high-speed switching feedback control technique that has been developed for control of nonlinear dynamic systems

    Parameter Estimation of Actuators for Benchmark Active Control Technology (BACT) Wind Tunnel Model with Analysis of Wear and Aerodynamic Loading Effects

    Get PDF
    This report describes the development of transfer function models for the trailing-edge and upper and lower spoiler actuators of the Benchmark Active Control Technology (BACT) wind tunnel model for application to control system analysis and design. A simple nonlinear least-squares parameter estimation approach is applied to determine transfer function parameters from frequency response data. Unconstrained quasi-Newton minimization of weighted frequency response error was employed to estimate the transfer function parameters. An analysis of the behavior of the actuators over time to assess the effects of wear and aerodynamic load by using the transfer function models is also presented. The frequency responses indicate consistent actuator behavior throughout the wind tunnel test and only slight degradation in effectiveness due to aerodynamic hinge loading. The resulting actuator models have been used in design, analysis, and simulation of controllers for the BACT to successfully suppress flutter over a wide range of conditions

    Design, test, and evaluation of three active flutter suppression controllers

    Get PDF
    Three control law design techniques for flutter suppression are presented. Each technique uses multiple control surfaces and/or sensors. The first method uses traditional tools (such as pole/zero loci and Nyquist diagrams) for producing a controller that has minimal complexity and which is sufficiently robust to handle plant uncertainty. The second procedure uses linear combinations of several accelerometer signals and dynamic compensation to synthesize the model rate of the critical mode for feedback to the distributed control surfaces. The third technique starts with a minimum-energy linear quadratic Gaussian controller, iteratively modifies intensity matrices corresponding to input and output noise, and applies controller order reduction to achieve a low-order, robust controller. The resulting designs were implemented digitally and tested subsonically on the active flexible wing wind-tunnel model in the Langley Transonic Dynamics Tunnel. Only the traditional pole/zero loci design was sufficiently robust to errors in the nominal plant to successfully suppress flutter during the test. The traditional pole/zero loci design provided simultaneous suppression of symmetric and antisymmetric flutter with a 24-percent increase in attainable dynamic pressure. Posttest analyses are shown which illustrate the problems encountered with the other laws

    Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis

    Get PDF
    Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors

    Extensive Copy-Number Variation of Young Genes across Stickleback Populations

    Get PDF
    MM received funding from the Max Planck innovation funds for this project. PGDF was supported by a Marie Curie European Reintegration Grant (proposal nr 270891). CE was supported by German Science Foundation grants (DFG, EI 841/4-1 and EI 841/6-1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Germline determinants of the somatic mutation landscape in 2,642 cancer genomes

    Get PDF
    Cancers develop through somatic mutagenesis, however germline genetic variation can markedly contribute to tumorigenesis via diverse mechanisms. We discovered and phased 88 million germline single nucleotide variants, short insertions/deletions, and large structural variants in whole genomes from 2,642 cancer patients, and employed this genomic resource to study genetic determinants of somatic mutagenesis across 39 cancer types. Our analyses implicate damaging germline variants in a variety of cancer predisposition and DNA damage response genes with specific somatic mutation patterns. Mutations in the MBD4 DNA glycosylase gene showed association with elevated C>T mutagenesis at CpG dinucleotides, a ubiquitous mutational process acting across tissues. Analysis of somatic structural variation exposed complex rearrangement patterns, involving cycles of templated insertions and tandem duplications, in BRCA1-deficient tumours. Genome-wide association analysis implicated common genetic variation at the APOBEC3 gene cluster with reduced basal levels of somatic mutagenesis attributable to APOBEC cytidine deaminases across cancer types. We further inferred over a hundred polymorphic L1/LINE elements with somatic retrotransposition activity in cancer. Our study highlights the major impact of rare and common germline variants on mutational landscapes in cancer
    corecore